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Abstract: Random Projections is a very simple yet powerful 
technique for dimensionality reduction. In this method the 
data is projected on to a random subspace, which preserves 
the approximate Euclidean distances between all pairs of 
points after the projection.  It can be proved that the inner 
product and Euclidean distance are preserved in the new data 
in the expectation. And many important Data Mining 
algorithm (e.g., K-means Clustering, KNN Classification etc.) 
can be efficiently applied to the transformed data and produce 
expected result. In this research paper we analysis Projection 
Based Multiplicative data perturbation for k-means 
Clustering as a tool for privacy-preserving data mining.  
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1. INTRODUCTION : 
Random projection method is very simple and 
computationally efficient techniques to reduce 
dimensionality for learning from high dimensional data. 
This approach is fundamentally based on the Johnson-
Lindenstrauss lemma [1], which notes that any set of m 
points in n-dimensional Euclidean space can be embedded 
into an O (Inm/є2) dimensional space such that the pair 
wise distance of any two points is maintained with a high 
probability. Therefore, by projecting the data onto a lower 
dimensional random space, we can dramatically change its 
original form while preserving much of its distance-related 
characteristics. This research paper presents extensive 
theoretical analysis and experimental results on the 
accuracy and privacy of the random projection-based data 
perturbation technique. 
1.1 Definition and Fundamental Properties 
Random projection refers to the technique of projecting a 
set of data points from a high dimensional space to a 
randomly chosen lower dimensional space. 
Mathematically, let X є Rn×m be m data points in n-
dimensional space. The random projection method 
multiplies X by a random matrix R є Rk×n, reducing the n 
dimensions down to just k. It is well known that random 
projection preserves pairwise distances in the expectation. 
This technique has been successfully applied to a number 
of applications, for example, VLSI layout [2], nearest-
neighbor search [3, 4], image and text clustering [5], 
distributed decision tree construction [6], motifs in bio-
sequences [7] discovery, high-dimensional Gaussian 
mixture models learning [8], half spaces and intersections 
of half spaces learning [9]. 
The following are the steps to reduce the dimensionality of 
the data by random projections: Suppose that we have a 
data set X={x1, …. xn} where each data point is a p 

dimensional vector such that xi є R
p and we need to reduce 

the data to a q dimensional space such that 1 ≤ q < p. 
1) Arrange the data into a p × n matrix where p is the 

dimensionality of the data and n is the number of data 
points. 

2) Generate a q × p random projection matrix R* using the 
MATLAB randn (q, p) function. 

3) Multiply the random projection matrix with the original 
data in order to project the data down into a random 
projection space. 
X*

q × n = R*
q × p * Xp × n 

 
Thus we can see that transforming the data to a random 
projection space is a simple matrix multiplication with the 
guarantees of distance preservation.  
 

2. K-MEANS CLUSTERING BY RANDOM 

PROJECTION 
k-means clustering is a data mining/machine learning 
algorithm used to cluster observations into groups of 
related observations without any prior knowledge of those 
relationships. The k-means algorithm is one of the simplest 
clustering techniques and it is commonly used in medical 
imaging, biometrics and related fields. 
 
2.1 The k-means Algorithm 
The k-means algorithm is an evolutionary algorithm that 
gains its name from its method of operation. The algorithm 
clusters observations into k groups, where k is provided as 
an input parameter. It then assigns each observation to 
clusters based upon the observation’s proximity to the 
mean of the cluster. The cluster’s mean is then recomputed 
and the process begins again. Here’s how the algorithm 
works: 
 
1. The algorithm arbitrarily selects k points as the initial 

cluster centers (“means”). 
2. Each point in the dataset is assigned to the closed 

cluster, based upon the Euclidean distance between 
each point and each cluster center. 

3. Each cluster center is recomputed as the average of the 
points in that cluster. 

4. Steps 2 and 3 repeat until the clusters converge. 
Convergence may be defined differently depending 
upon the implementation, but it normally means that 
either no observations change clusters when steps 2 
and 3 are repeated or that the changes do not make a 
material difference in the definition of the clusters. 
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3. EXPERIMENTAL RESULTS 
In this study we have Students result database of Vikram 
University, Ujjain. I randomly selected 7 rows of the data 
with only 7 attributes (Marks of Foundation, Marks of 
Mathematics, Marks of Physics, Marks of Computer 
Science, Marks of Physics Practical, Marks of Computer 
Science Practical and Marks of Job Oriented Project). 
With this data we have generated noise matrices with the 
help of different different projections and these resultant 
noise data sets are multiplied with the original data set to 
form the perturb data sets. We have evaluated Euclidean 
Distance of original and perturbed data sets with pdist() 
fuction of Matlab. According to the expectation the 
Euclidean Distance among the data records are preserved 
after perturbation.With the Original data we have generated 
3 clusters from the kmeans() function of matlab. And 
similarly we have generated 3 clusters by using the same 
function with the perturbed data sets. We have used 
silhouette function for plotting graph of the clustered data 
generated by the original data and also for plotting graph of 
the clustered data generated by perturbed data sets. 
 
K-means Clustering of Original Data and Perturbed Data 
after apply 85% Projection - 
 

 
 
 

 
 
 

K-means Clustering of Original Data and Perturbed Data 
after apply 70% Projection - 
 

 
 

 
 

K-means Clustering of Original Data and Perturbed Data 
after apply 60% Projection - 
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K-means Clustering of Original Data and Perturbed Data 
after apply 45% Projection – 
 

 
 
 

 
 

4. DISCUSSION 
It is proved by the experimental result that we get the 
expected result after applying clustering to the perturbed 
data as after applying clustering to the original data. Hence 
we can say that data perturbed by this technique can be 
used in clustering techniques and we can work with high 
dimensional data and large datasets. So we can use the 
perturbed data in various data mining applications like 
marketing, organization, land use, insurance, city planning 
etc. 
 

5. CONCLUSION 
In this research paper, we have analyzed the effectiveness 
of Projection based perturbation and we considered the use 
of this technique as a data perturbation technique for 
privacy preserving data mining. This technique is quite 
useful as it allows many interesting data mining algorithms 
to be applied directly to the perturbed data and produce 
expected result, e.g., K-means clustering, with little loss of 
accuracy. 
The tremendous popularity of K-means algorithm has 
brought to life many other extensions and modifications. 
Euclidean distance is an important factor in k-means 
clustering. In Distance preserving perturbation technique 
the Euclidean distance is preserved after perturbation. 
Hence the data perturbed by this technique can be used in 
various clustering techniques. 
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